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Abstract

We develop a framework for accumulating evidence across studies and apply it to under-
stand the theoretical foundations of replication. We focus on two ways of assessing empirical
results across studies: target-equivalence, where empirical targets across studies are the same,
and target-congruence, where empirical targets’ sign is the same across studies. Our results
show how each of these assessment criteria are related to distinct formulations of external va-
lidity. We stress the importance of holding aspects of a research design fixed across settings
when accumulating evidence across studies, which ensures that questions of external validity
can be addressed using replication.
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Accumulating empirical evidence about a phenomenon that manifests in multiple places, at
different times, and is measured by different scholars is a critical step toward the production of
substantive knowledge. Without such knowledge, careful and credible empirical work may be
context-specific and idiosyncratic. An important tool to overcome such potential limitations is
replication, where the same substantive question is addressed across different studies (Banerjee
and Duflo, 2009; Dunning, 2016). However, determining what features and considerations make
the comparison of empirical evidence across studies productive is unclear since there is no general
understanding—and few best practices—to guide such efforts. In this article, we develop a frame-
work to highlight key concepts to help understand the role of replication in the accumulation of
empirical evidence.

In our framework, an empirical study measures the influence of a mechanism (or set of mecha-
nisms) by assessing the “effects of causes” (Holland, 1986). A study consists of three key ingredi-
ents. First, each study includes a contrast, which defines the comparison of interest and consists of
at least two values of an instrument, such as treatment/control. Second, conducting a study involves
a measurement strategy, which encapsulates all considerations that go into measuring the effect of
a contrast, such as the choice of an outcome and the various techniques involved in its measure-
ment. Third, the setting gives the contextual features that are relevant to the empirical assessment
of a mechanism, such as the time/place/population a study was conducted. These three ingredients
combine to define an empirical target, or treatment effect, which corresponds to a study’s primary
estimand.

Comparing estimates from two studies of the same phenomenon—which is the goal in a repli-
cation study—is challenging because there are multiple reasons that the estimates in these studies
might differ. First, and as is well known, statistical noise stemming from random samples or
chance imbalances in treatment assignment ensure that any two (realized) estimates will be dif-
ferent, leading to statistical discrepancies. In addition, we derive two non-statistical reasons that
estimates may differ, which emerge from study design features and a mechanism’s external va-
lidity. These are fundamentally theoretical concerns which are important because they determine
whether constituent studies are “aiming at the same target” and thus speak to the same substantive
question.

We develop two concepts to describe the theoretical relationship between constituent studies.
First, two studies are target-equivalent when they measure the same empirical target (Slough and
Tyson, 2022). Second, and novel to this article, two studies are target-congruent when their empir-
ical targets (e.g., treatment effects) have the same sign (positive or negative). We also develop two
formal definitions of external validity (of a mechanism). First, a mechanism has external validity if
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it produces the same empirical target in different settings under an otherwise identical experiment
(i.e., same contrast and measurement strategy).1 Second, a mechanism has sign-congruent exter-

nal validity when it produces an empirical target with the same sign in different settings. External
validity is a stronger condition as it implies sign-congruent external validity, whereas a mechanism
with sign-congruent external validity need not be externally valid.

When a replication study is conducted in different settings, at different times, and on different
samples, it may not measure the same empirical target as the original study. The target discrepancy

between two studies measures the extent to which a mechanism produces a different effect in
different settings (holding fixed other aspects of the research design). Target discrepancies reflect
the degree to which external validity holds (or fails) between two settings, and we show that when a
mechanism has external validity then the target discrepancy across studies is zero. Sign-congruent
external validity, while allowing for target discrepancies, constrains their form and magnitude.

Novel to our framework is the observation that different constituent studies often have different
research designs, e.g., different treatments or different measurement strategies. Such differences
in research design produce artifactual discrepancies between empirical targets because they make
different comparisons or measure outcomes differently. The artifactual discrepancy between stud-
ies measures the extent to which empirical targets between two studies are not the same but for
reasons that are distinct—and orthogonal—to issues of external validity. For example, if the con-
trasts in two studies are different, then studies implicitly make different comparisons, which leads
to differences in observed treatment effects. When two studies employ the same contrast and
measurement strategy, we say they are harmonized, and show that by harmonizing two studies,
researchers can eliminate artifactual discrepancies. Artifactual discrepancies may also reflect the
constraints researchers face, e.g., measuring the influence of a mechanism under the same condi-
tions may be impossible in some cases.

We show that evaluating a mechanism’s external validity, or sign-congruent external validity, is
a more demanding endeavor than is typically acknowledged (albeit informally). Our main results
connect different notions of external validity and harmonization to target-equivalence and target-
congruence. First, we show that a collection of studies is target-equivalent (meaning they have
the same empirical target) if and only if all of the studies are externally valid and harmonized.
Second, we show that a collection of studies is target-congruent (meaning their empirical targets
have the same sign) if and only if all of the studies satisfy sign-congruent external validity and
are all harmonized. The latter is about qualitative comparisons of the form: “author A’s study
finds that X increases Y , whereas we find no evidence that X increases Y .” Such comparisons

1See Slough and Tyson (2022: Definition 7) and their discussion of external validity.
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implicitly invoke an expectation that similar things will be observed if probed empirically, but
take for granted how differences in design can undermine such conclusions. Our results, when
taken together, highlight how different ways of assessing empirical targets correspond to different
notions of external validity.

A large majority of the literature on replication and external validity focuses almost exclusively
on statistical issues that arise when combining evidence across studies, or worse, assumes that the
kinds of theoretical issues highlighted by target and artifactual discrepancies can be conceptualized
as statistical issues. To stress how this approach can be misleading, we include statistical noise in
our framework and show that there is a tradeoff when increasing the number of studies considered
in a replication. Specifically, we show that although increasing the number of studies alleviates
the influence of idiosyncratic—or random—error in observation, it also magnifies the influence
of artifactual discrepancies that arise when research designs are not harmonized across studies.
Moreover, because random error cannot be distinguished from artifactual discrepancies, this limits
whether one can isolate and measure the influence of a substantive mechanism in practice. These
results suggest that the guidance to “do more studies” to assess the external validity of empirical
findings underappreciates the downsides of this approach absent additional guidance on the design
of replication agendas (Banerjee and Duflo, 2009; Gerber and Green, 2012; Dunning, 2016).

We then assess the properties of two common statistical tests that are used in replication studies.
The first, the estimate-comparison test, examines the difference in point estimates from constituent
studies, thus probing target-equivalence. The second, the sign-comparison test, probes target-
congruence by examining the signs of estimates from different studies. We show that these tests
are only indicative of the relevant type of external validity when all studies are harmonized and
the estimators used in each study are unbiased and consistent. Otherwise, artifactual discrepencies
become conflated with external validity, and as a result, our tests cannot distinguish them (nor can
any others).

We conclude with guidance for a replication agenda that involves a sequential process that more
carefully moves from replicating an experiment to replicating a phenomenon with an eye toward
understanding what artifactual discrepancies may be present because of different design features.
Most expositions of replication classify different replications according to how much of the original
experiment they hold constant (Collins, 1992; Schmidt, 2009; Nosek and Errington, 2017). In
particular, Guala (2005: pg. 14) distinguishes between repetition, which is essentially a replication
of a research or experimental design, and genuine or conceptual replication, which modifies the
research design in an effort to see if the same phenomenon is present in multiple places. Our
results highlight that this distinction is incomplete. In particular, even comparison of sign between
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studies can be misleading when there are design differences across studies. Because our framework
distinguishes between a study’s sample, setting, and design (contrasts and measurement strategies),
it allows us to expand on common expositions of replication by distinguishing different kinds of
conceptual replications. We describe a design-based approach to conceptual replication, which
provides a more natural connection between research design and causal effects, providing a way
of giving a causal interpretation to effects that arise in multiple places and at different times.

Our primary contribution is to clarify the relationship between replication and external validity.
Conventional wisdom holds that replication facilitates learning about external validity (Banerjee
and Duflo, 2009). We show that this is not, in general, the case. Without careful attention to
design, replication can even mislead efforts to assess external validity. Our results show how
comparisons and statistical tests commonly used in replication exercises link to distinct concepts
of external validity, revealing that additional assumptions about the design of constituent studies
are necessary to learn about external validity. These results show how replication agendas can be
redesigned to assess questions of external validity.

1 Motivating Example and Related Literature
Motivated by the poor health outcomes for children in rural Uganda, Björkman and Svensson
(2009) present an important study on community monitoring of health care workers from an ex-
periment that was conducted in Uganda in 2004. The authors ask whether greater oversight of
health care workers could improve service provision and thus health outcomes. The primary focus
of their study is unofficial community oversight, and not oversight by the Ugandan government. To
study this question, Björkman and Svensson measure the effects of an intervention that consisted
of three things: (i) dissemination of a health report card containing information about local dis-
pensaries in community meetings; (ii) health facility meetings; and (iii) a series of joint meetings
between community members and health workers. This bundled treatment was randomly assigned
to 25 communities with another 25 communities as control, i.e., who did not receive any part of
the bundled treatment.

Björkman and Svensson (2009) show that their bundled treatment increased healthcare utiliza-
tion by community members as well as increasing child health outcomes, including reductions
in childhood mortality. Notably, the treatment effects in the study were large. In particular, sev-
eral measured (standardized) treatment effects were more than a standard deviation in magnitude.
Björkman and Svensson suggest that citizen pressure—monitoring and the threat of collective
action—was the mechanism that best explains the dramatic improvement in health outcomes asso-
ciated with their treatment.

Prompted by the large policy impact of Björkman and Svensson (2009), Raffler, Posner, and
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Parkerson (2020) conducted a carefully-designed, pre-registered replication experiment in rural
Ugandan communities from 2014-2016. The replication experiment was conducted a decade after
the original experiment was fielded. The replication experiment included 92 clusters in treatment
and 95 clusters in control.

In contrast to the original study, Raffler, Posner, and Parkerson (2020) generally find greatly
attenuated or null treatment effects on utilization and health outcomes when compared to those in
Björkman and Svensson (2009). Why do Raffler, Posner, and Parkerson (2020) find qualitatively
different results from Björkman and Svensson (2009)? In their article, they cite two explana-
tions. First, the presence of statistical noise, i.e., random error, could lead to differences between
each study’s results. Specifically, one may be concerned—as were Raffler, Posner, and Parkerson
(2020)—that the small number of clusters in Björkman and Svensson (2009) invites noisier esti-
mates of treatment effects, and as a consequence, the promising findings of the original study were
the result of a statistical fluke. Second, Raffler, Posner, and Parkerson (2020) postulate that in-
creases in the overall level of healthcare over the intervening decade between the studies made the
intervention less effective. Other explanations include, for example, that the high number of ex-
periments conducted in Uganda over the course of the decade could have changed how community
members and healthcare workers respond to external interventions. Either of these explanations
suggest that the original effect of community monitoring interventions (observed in Uganda 2004-
2005), could have been a real effect, but one that lacks external validity.2 Consequently, we should
not necessarily expect similar findings in Uganda in 2014-2016.

There is another potential explanation. Since it was difficult for Raffler, Posner, and Parker-
son (2020) to conduct exactly the same experiment as Björkman and Svensson (2009), there are a
number of differences between their respective research designs.3 If the interventions or outcome
measures were sufficiently different between studies, such differences could be partly responsible
for the differences between the effect observed in each study. For example, while Raffler, Posner,
and Parkerson (2020) worked with implementing partners with no prior experience in treatment
communities, Björkman and Svensson (2009) worked through 18 community-based organizations,
some of which had previous experience working in treatment communities. Additionally, Raf-
fler, Posner, and Parkerson (2020) measured outcomes at 8 month and 20 months post-treatment,
whereas Björkman and Svensson (2009) measured outcomes at 12 months post-treatment. Ulti-

2Specifically, it would lack temporal validity (Munger, 2021).
3Importantly, among other community-monitoring interventions in the field of healthcare, Raf-

fler, Posner, and Parkerson (2020) remain most faithful to the treatments and outcome measures
in the original experiment. See Raffler, Posner, and Parkerson (2020) for a discussion of other
conceptual replications of Björkman and Svensson (2009).
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mately, distinguishing between these three possibilities—statistical noise, lack of external validity,
and variation in study design—is of central importance to the productive use of replication.4

We contribute to the literature on external validity, which is best thought of as an umbrella term
that encapsulates a number of related but distinct concepts—unified by their concern with target
discrepancies. Many formulations of external validity are about projecting an empirical estimand
onto a destination, which can include another study site (e.g., Shadish, Cook, and Campbell, 2002),
or a grand population (e.g., Egami and Hartman, 2022; Findley, Kikuta, and Denly, 2021). Pearl
and Bareinboim (2011, 2014) develop an imputation method, the “transport formula,” which takes
observational covariates collected in two settings and uses differences between them to reweight
the observed causal effect from one setting to another. Other applications use both unit- and setting-
level covariates for extrapolation (e.g., Bisbee et al., 2017; Dehejia, Pop-Eleches, and Samii, 2021).
Fariss and Jones (2018) connect projective external validity to a study’s predictive power. Recent
elaboration of hierarchical models similarly takes a projectivist view of external validity where a
“common effect” projects onto each site or constituent study (Meager, 2019; Gechter and Meager,
2021).

In this article we formally define external validity as a property across studies. These defi-
nitions characterize the relationship between multiple studies (or estimates) without reference to
some external destination, and are thus naturally suited to replication studies. Consequently, our
formulations of external validity are a property of a cross-section of studies and not something
that “projects” from one study to another. By doing a replication study, authors invest time and
often substantial resources in trying to measure an effect in a new sample or setting, which is
quite different than using information from a single study to estimate or impute the effect from
one sample or setting to another. Indeed, Raffler, Posner, and Parkerson (2020) laudably raised
hundreds of thousands of dollars to replicate Björkman and Svensson (2009), instead of simply
applying some estimator (e.g., Pearl and Bareinboim, 2011) to the Björkman and Svensson (2009)
data. Finally, this paper contributes to an emerging literature on the “theoretical implications of
empirical models” that focuses on the theoretical properties of commonly-used empirical research
designs (Bueno de Mesquita and Tyson, 2020; Abramson, Koçak, and Magazinnik, 2022; Slough,
2022; Izzo, Dewan, and Wolton, 2020).

4In the appendix we show that our framework also applies to observational replication studies,
by discussing a recent dialogue on the effects college football game outcomes on pro-incumbent
voting, for a summary see Fowler and Montagnes (2022) and Graham et al. (2022).
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2 Framework
We expand the framework originally presented by Slough and Tyson (2022) and develop new
concepts that are important for replication. Suppose there is a collection of J ≥ 2 studies on a
common phenomenon which are indexed by j and can include experiments, quasi-experiments, or
observational studies. What matters is that these studies are unified by the presence of a common
(set of) mechanism(s), which motivates comparison of study estimates as an exercise in knowledge

accumulation.
Each study is comprised of three ingredients. Unless stated otherwise, all sets are measure

spaces with strictly positive Lebesgue measure and are smooth manifolds.5 First is a measure-
ment strategy, denoted by m ∈ M ⊂ R, where M represents the set of potential measurement
strategies. A measurement strategy captures the choices a researcher makes when choosing an
outcome of interest and devising a measure of that outcome. Second, every study involves a con-
trast, (ω′, ω′′) ∈ C ⊂ R2, where C is compact, which defines the comparison of interest between
two instrument values (Bueno de Mesquita and Tyson, 2020). The two instrument values are taken
from the set of all potential comparisons, and are most commonly referred to as “treatment” and
“control.” We say that two studies are harmonized if they have the same measurement strategy
and the same contrast. Third, every study takes place in a setting, θ ∈ Θ ⊂ R. Settings capture
attributes of individual units (i.e., subjects) as well as features of the environment where the study
is conducted.

An empirical exercise measures the presence and influence of a mechanism by looking at its
effect, and the effect in a particular study is its empirical target, which we formalize as follows.

Definition 1. For a measurement strategy m ∈M , a contrast (ω′, ω′′) ∈ Ω, and setting θ ∈ Θ, the

treatment effect function is a function, τm(ω′, ω′′ | θ) : M × Ω × Θ → R, that is smooth almost

everywhere, whose derivative has full rank in measurement strategies and contrasts, and for which

sign(τm(ω′, ω′′ | θ)) = −sign(τm(ω′′, ω′ | θ)).

The empirical target is the measured effect of a study as it relates to how things are measured,
which comparison is made, and features of the setting where the study is conducted (time, location,
etc.).6 Our framework accommodates several estimands depending on the application, including
variations on the marginal treatment effect of Heckman and Vytlacil (2005), such as the average

5These are not particularly restrictive as any set of probability distributions over a finite set
satisfies these assumptions.

6That τ is smooth almost everywhere is not particularly restrictive, unless one expects it to be
a nonmeasurable function or fractal.
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treatment effect, the treatment effect on the treated, and the local average treatment effect. That
the derivative of the treatment effect function has full rank in measurement strategies and contrasts
captures that the observed effect of a particular design varies with that design. Our framework
emphasizes the relationship between research design and empirical targets, distinguishing it from
others, e.g., UTOS, PICO, etc., which are special cases of our framework.7 The final condition
holds that reversing the order of the instrument value changes the sign of the empirical target,
which holds for treatment effects defined in terms of differences in potential outcomes.

Empirical measurement is also concerned with estimation, which encapsulates the set of con-
cerns that invariably arise because of “random noise” that interrupts the analyst’s ability to pre-
cisely measure the empirical target. Such random noise typically stems from the random sampling
of units, chance imbalances in the assignment of instruments, and/or non-systematic measurement
error. To capture the potential for estimation concerns in our framework, there is a collection of
random variables εnj

j , where nj represents the sample size of study j. The observed, or measured

effect in study j, conducted in site θj , is written as

ej = τmj
(ω

′

j, ω
′′

j | θj) + ε
nj

j , (1)

which is the empirical target in study j, as a consequence of the design, Dj ≡ (mj, (ω
′
j, ω

′′
j )),

setting, θj , and random noise interrupting the direct measurement of that empirical target, εnj

j .
Introducing distributions over this observation error induces a Blackwell experiment (Blackwell,
1953). An estimator of the target τmj

(ω
′
j, ω

′′
j | θj) is unbiased when E[ε

nj

j ] = 0 and consistent
when E(εni

i − E[εni
j ])2 → 0 (in measure) as ni →∞.

3 Concepts
When comparing two or more studies, there may be systematic differences that are not statistical,
because they arise from differences between the design of constituent studies, the settings at hand,
or the mechanism producing the effects. As a result, these differences cannot be reduced to “error,”
and should not be treated as random. In this section we develop concepts that help organize some
of the nonstatistical issues that can arise when accumulating evidence across settings.

We characterize the relationship between the empirical targets—the treatment effect functions—
of two studies. Recall that these targets do not include statistical noise.

7In particular, UTOS of Shadish, Cook, and Campbell (2002), or PICO, which is common in
medical meta-studies, derive from our framework by imposing that the effect of interest is inde-
pendent of comparisons that are made (contrasts) or how outcomes are measured (measurement
strategies).
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Definition 2. Two studies E1 = {m1, (ω
′
1, ω

′′
1 ), θ1} and E2 = {m2, (ω

′
2, ω

′′
2 ), θ2} are target-equivalent

if

τm1(ω
′

1, ω
′′

1 | θ1) = τm2(ω
′

2, ω
′′

2 | θ2),

and target-congruent if

sign(τm1(ω
′

1, ω
′′

1 | θ1)) = sign(τm2(ω
′

2, ω
′′

2 | θ2)).

In short, two studies are target-equivalent when their targets are the same and target-congruent
when the targets have the same sign. It is important to reiterate that the estimates of these targets—
the observed e1 and e2—include idiosyncratic random error. This means that if two studies are
target-equivalent, estimates of the targets will be different (with probability 1) and may even have
different signs. Our focus is instead on the non-statistical reasons for differences in estimates
across studies, because they cannot necessarily be solved using statistical techniques.

3.1 Target Discrepancy and External Validity

We begin with differences between empirical targets that are the result of a mechanism’s influence,
which can potentially manifest differently across settings. We call such differences target discrep-

ancies and note that they constitute an all-else-equal difference in observed effects resulting from
differences in setting.

Definition 3. For research designD = {m, (ω′, ω′′)}, comprised of measurement strategy,m ∈M
and contrast, (ω

′
, ω

′′
) ∈ Ω, the target discrepancy from setting θi to setting θj is

∆D(θ, θ′) = τm(ω
′
, ω

′′ | θi)− τm(ω
′
, ω

′′ | θj).

Our definition of target discrepancy holds aspects of a research design fixed, i.e., harmoniz-
ing the measurement strategy, m, and the contrast, (ω′, ω′′), across the two settings. As such,
∆D(θi, θj) identifies the difference in empirical targets that is attributable to moving from setting
θi to θj , and not due to differences in research design. Although our terminology and focus on
empirical targets is new, there is a great deal of scholarly attention given to issues revolving around
target discrepancies which typically falls under the label of “external validity.”

Definition 4 ( Slough and Tyson (2022)). A mechanism has external validity from setting θi to θj
if for almost every measurement strategy m ∈M and almost every contrast (ω′, ω′′)

τm(ω
′
, ω

′′ | θi) = τm(ω
′
, ω

′′ | θj).
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A mechanism is externally valid if it has external validity for almost all settings θ ∈ Θ.

Our definition of external validity has a clear link to target discrepancy and to develop an
intuition for their relationship, we present a straightforward remark.

Remark 1. The target discrepancy between studies is zero, ∆D(θi, θj) = 0 for almost allD, if and

only if the mechanism of interest has external validity between settings θi and θj .

Proof. From Definition 3, the target discrepancy is

∆D(θi, θj) = τm(ω
′
, ω

′′ | θi)− τm(ω
′
, ω

′′ | θj),

which, after applying the definition of external validity, implies that ∆D(θi, θj) = 0 almost every-
where, establishing necessity and sufficiency.

This remark highlights the conceptual link between external validity and target discrepancies.
Remark 1 stresses that target discrepancies emerge because the mechanism lacks external validity
between two settings. The absence of external validity does not make any statement about the
magnitude or sign of target discrepancies, only that they are non-zero.

External validity may be more than one needs. For example, Morton and Williams (2010) dis-
tinguish between “point” and “relationship” predictions of formal models in experimental social
science, and similarly, a researcher may be interested in assessing the sign, rather than the pre-
cise magnitude of treatment effects across different settings. Moreover, if a mechanism is only
activated for a subset of units—e.g., a drug therapy works only on women—differences in sample
composition will differentially dilute treatment effects. In either case, it is useful when considering
practical applications to introduce a notion of external validity that is more closely-aligned with
directional theories and hypotheses.

Definition 5. A mechanism has sign-congruent external validity from setting θi to setting θj if for

almost every measurement strategy m ∈M and almost every contrast (ω′, ω′′)

sign(τm(ω
′
, ω

′′ | θi)) = sign(τm(ω
′
, ω

′′ | θj)).

A mechanism is sign-congruent externally valid if it has sign-congruent external validity for almost

all settings θ ∈ Θ.

Sign-congruent external validity is similar to external validity in that each expresses a theo-
retical property of empirical targets across settings. Definition 5, however, only requires that the
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Figure 1: Illustration of external validity and sign-congruent external validity in harmonized ex-
periments in two settings, θ1 and θ2. We assume a fixed ω′ and m in order to depict these concepts
in two dimensions.

empirical targets across studies share the same sign, rather than having to be the same magnitude
(as in Definition 4). Indeed, sign-congruent external validity is weaker in that any mechanism
that has external validity has sign-congruent external validity, i.e., external validity implies sign-
congruent external validity, but that a mechanism that is sign-congruent externally valid need not
be externally valid.

Figure 1 illustrates external validity and sign-congruent external validity using graphical ex-
amples (to fix ideas). To plot these figures in two dimensions, we fix a measurement strategy, m,
and one instrument, ω′. We plot treatment effects, τm(ω′, ω′′ | θ), in two settings, θ1 and θ2, as
a function of the other instrument value ω′′, which represents the level of treatment. In Panel A,
we show that external validity implies that treatment effects are identical in both settings. Impor-
tantly, the plot shows that external validity makes no requirement of functional form, only that
the treatment effect function is the same in both settings. Panel B depicts a mechanism that has
sign-congruent external validity but not external validity between settings θ1 and θ2. This means
that although the relationship between treatment, ω′′, and the treatment effect, τm(ω′, ω′′ | θ), can
vary across settings, it can only do so in a particular way. Graphically, sign-congruent external
validity requires that the treatment effect functions in the two settings must cross 0 in the same
places (share all x-intercepts) and from the same direction (above or below 0). Panel C depicts a
mechanism that lacks sign-congruent external validity, which can be seen because the x-intercepts
are different in the two settings, θ1 and θ2. Indeed, in the shaded regions, the two treatment effect
functions have opposite signs. Even though the shape of the treatment effect functions are quite
similar, the mechanism does not exhibit sign-congruent external validity.
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3.2 Artifactual Discrepancy and Harmonization

Almost all scholarly attention that is devoted to the accumulation of empirical evidence across
studies is focused (informally) on issues related to target discrepancies. However, there is another
feature that can frustrate efforts at accumulating evidence: variation in research designs. In prac-
tice, and outside the special case of replications that only vary samples, it can be very difficult to
ensure that two studies are harmonized when conducted in different settings.

When two studies employ different measurement strategies, or make different comparisons
(contrasts), their measured effects can vary for reasons unrelated to issues of estimation or external
validity.

Definition 6. For setting θ ∈ Θ, the artifactual discrepancy between designs Di = {mi, (ω
′
i, ω

′′
i )}

and Dj = {mj, (ω
′
j, ω

′′
j )} is

A(Di,Dj | θ) = τmi
(ω

′

i, ω
′′

i | θ)− τmj
(ω

′

j, ω
′′

j | θ).

Artifactual discrepancies are differences in empirical targets that emerge from using differ-
ent contrasts or measurement strategies—they come from using different research designs. In
the Björkman and Svensson (2009) and Raffler, Posner, and Parkerson (2020) studies, measuring
outcomes at different times relative to the rollout of the intervention may have led to different
measured effects even if the underlying treatment effects (as a function of time) were the same.

Artifactual discrepancies highlight the importance of harmonization between different studies,
which is illustrated by our next remark:

Remark 2. The artifactual discrepancy is zero, A(Di,Dj | θ) = 0, almost everywhere if and only

if i and j are harmonized.

Proof. From Definition 6, the artifactual discrepancy is

A(Di,Dj | θ) = τmi
(ω

′

i, ω
′′

i | θ)− τmj
(ω

′

j, ω
′′

j | θ),

which is 0 if and only if i and j are harmonized, i.e., when Di = Dj .

This remark follows immediately from the definition of harmonization and it says that when
two studies are harmonized, the artifactual discrepancy is zero. It is important to note that design-
induced discrepancies are “artifactual,” but this does not imply that these discrepancies are “nui-
sance” parameters. To illustrate that artifactual discrepancies are fundamentally non-random, sup-
pose that two studies examine the effects of some mechanism such as nutritional intake on chil-
dren’s height. One study measures height in inches; the other measures height in centimeters.
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When the mechanism behind the treatment has external validity, the treatment effects across the
studies will be different, but this difference is not random error—the measurements are determin-
istically related. Specifically, we expect the treatment effects in centimeters to be the treatment
effects in inches scaled by a factor of 2.54.

Researchers often purposefully select their contrasts and outcomes when designing a study.
Artifactual error should be understood as a form of non-random error in replication studies that
nevertheless goes unobserved. As another example, In a drug trial we generally expect to observe
different treatment effects if the dosage of a drug were doubled, even if it were administered to
the same population and in the same setting. Failure to adjust for dosage differences would result
in artifactual discrepancies. Specifically, in contrast to arguments that a lack of harmonization is
simply “another source of random error” in replication studies (Gilbert et al., 2016: p. 1037a),
issues related to the harmonization between studies are fundamentally non-statistical concerns.
They are instead issues of research design, and consequently, eliminating them is ultimately a
question of research design.8

Remark 2 stresses that there are two sources of artifactual discrepancy in our framework: (i)
differences in measurement strategies; and (ii) differences in contrasts. It is important to empha-
size that artifactual discrepancies affect the connection between empirical targets that are unified
by their study of a unique substantive phenomenon. However, they may be of independent inter-
est in and of themselves since they provide information about the “technology of intervention.”
Learning how treatment effects vary in features of distinct interventions—like varying dosages of
a treatment—can provide important information about the mechanism’s effects or provide novel
policy recommendations.9 It also stresses that an intervention may interact with a mechanism or
setting in ways that are not easy to disentangle.

8While some psychologists like Monin and Oppenheimer (2014) have advocated randomly
varying the content of contrasts in conceptual replications, this practice remains far outside main-
stream practice.

9If a researcher were interested in a specific subset of contrasts or measurement strategies that
have Lebesgue measure 0, such as integer values of contrasts, then our conditions would need
to be strengthened to “everywhere.” However, in the case where the analyst doesn’t know per-
fectly which values in the set of contrasts (or measurement strategies) correspond to integer values
of the intervention (relative to the function τ ), then this would involve a (plausibly) continuous
distribution, reflecting the analyst’s uncertainty about the technology of intervention; this kind of
uncertainty is outside of our model.
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4 Empirical Targets and External Validity
We now turn to some results that consider how external validity and harmonization relate to target-
equivalence and target-congruence. The relationship between harmonization, external validity,
and target-equivalence is developed at length in Slough and Tyson (2022), applied to the case of
meta-analysis. However, they did not consider the role and importance of artifactual and target dis-
crepancies, which are central to the comparison of treatment effects, and thus replication projects.

Theorem 1 (Target-equivalence). For a collection of studies {Ei = (mi, (ω
′
i, ω

′′
i , θi)}Ni=1, target-

equivalence holds across i almost everywhere if and only if all studies satisfy external validity and

are harmonized.

Recall that Remark 1 guarantees that external validity ensures that all target discrepancies are
zero. Moreover, Remark 2 shows that harmonization ensures that artifactual discrepancies are also
zero. These observations show how external validity and harmonization are jointly sufficient for
target-equivalence. The argument for necessity is more involved and is in the appendix. The key
intuition for Theorem 1 is illustrated in Figure 2. In panel (a), the treatment effect functions are
externally valid, but a lack of harmonization induces artifactual discrepancies from using differ-
ent levels of treatment, ω′′1 and ω′′2 . These artifactual discrepancies undermine target-equivalence
(except at exactly two points), illustrated in the grey regions. In contrast, Panel (b) shows that har-
monization is insufficient to achieve target-equivalence when external validity is absent (even with
sign-congruent external validity). The grey zones in each panel correspond to the set of treatment
levels where target-equivalence fails due to a lack of external validity. These examples, depicted in
Figure 2(a)-(b), are not unusual, and Theorem 1 establishes that the sets where target-equivalence
fails, due either to a lack of harmonization or a lack of external validity, have positive measure in
general.

We now consider target-congruence and its relationship with harmonization of study designs
and sign-congruent external validity.

Theorem 2 (Target-congruence). For any collection of studies, {Ei = (mi, (ω
′
i, ω

′′
i , θi)}Ni=1,

(a) if sign-congruent external validity holds across i then they are target-congruent if and only if

every study is harmonized;

(b) if Ei is harmonized for all i, then they are target-congruent if and only if sign-congruent exter-

nal validity holds across i.
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Figure 2: Illustration of Theorem 1. The grey regions in panel (a) depict the regions where target-
equivalence fails when ω′′s are not harmonized. The grey regions in panel (b) depict the regions
where target-equivalence fails due to a lack of external validity.

A key component of the proof of Theorem 2 is the “sign-flip” set, where target-congruence
fails, and the details of its construction are in the appendix. This set is constructed for measure-
ment strategies by focusing on the set of contrasts where the sign is different between two different
measurement strategies. This is important because it is where the the sign of an effect is different
depending only on changing the measurement strategy—not because the sign of the mechanism’s
effect varies over settings. The proof of Theorem 2 establishes that this sign-flip set has positive
measure, and this is a problem because it implies that any empirical distribution over effects incor-
rectly identifies when a mechanism’s effect has the same sign in different places.10 Another way of
interpreting Theorem 2 is to observe that it also implies that a mechanism that lacks sign-congruent
external validity, and hence produces effects with different signs in different settings, can produce
the same sign in empirical studies because of artifactual discrepancies, thereby producing mislead-
ing results for the analyst.

Figure 3 illustrates Theorem 2. Panel (a) shows that even when sign-congruent external validity
holds, a lack of harmonization—as indicated by the different ω′′s—creates the sign-flip sets indi-
cated by the grey regions. In Panel (b), sign-congruent external validity does not hold, and even
if researchers harmonize treatment levels across studies (choosing the same ω′′), the signs of the
empirical targets differ in the grey regions, which is where target-congruence does not hold. Theo-
rem 2 establishes that these sets have positive measure whenever harmonization or sign-congruent

10Moreover, the probability this happens can be arbitrarily close to 1.
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Figure 3: Illustration of Theorem 2. The grey regions in panel (a) depict the sign-flip sets, or the
regions where target-congruence fails when ω′′s are not harmonized. The grey regions in panel (b)
depict the regions where target-congruence fails due to a lack of sign-congruent external validity.

external validity do not hold. Moreover, the size of these sets can be arbitrarily large depending on
how τm(ω′, ω′′|θ) varies in setting, θ.

A natural question is to what extent external validity, or sign-congruent external validity, needs
to hold globally, i.e., for almost all research designs and settings. What if, instead, external validity
holds on a strict subset of Θ? In such a case, target-equivalence, or target-congruence respectively,
would fail unless the analyst is able to identify precisely where external validity, or sign-congruent
external validity, holds. We contend that researchers typically do not have sufficient information to
identify these sets. As such, we argue that external validity and sign-congruent external validity are
best understood as generic properties. We note further that if external validity held on some strict
subset of research designs and settings, and sign-congruent external validity held on all, then only
sign-congruent external validity can be taken to be satisfied, and target-congruence is the most the
analyst can assess.

4.1 Increasing the Number of Studies

Some large replication studies conduct N ≥ 2 independent replications of a single study (e.g.,
Klein et al., 2014). Although pooling more replications could facilitate learning about any statis-
tical discrepancies between studies, the information the analyst gains is substantially complicated
when the inclusion of studies introduce target or artifactual discrepancies. Importantly, target and
artifactual discrepancies are not random, and thus, cannot be treated as being drawn from a known
distribution across different replication studies—this effectively sweeps the problem under the rug.
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To illustrate the difference, we now apply Theorem 2 to show that artifactual discrepancies
are not solved by pooling multiple distinct replications without specific consideration of research
design. In particular, we consider what happens to the sign-flip set discussed above when more
studies are added to a replication.

Theorem 3. Take a collection of studies, {Ei = (mi, (ω
′
i, ω

′′
i , θi)}Ni=1, the set where the sign of

empirical targets is (artifactually) different is nondecreasing (in the set inclusion order) in the

number of studies N .

This result establishes that increasing the number of studies does not make it “easier” to achieve
target-congruence, but instead more difficult. This follows from the observation that adding addi-
tional studies involves expanding the sign-flip set discussed above, which is made up of artifactual
discrepancies. Theorem 3 suggests that there is a dilemma when considering how many studies to
include in a replication. While accumulating more studies to obtain more estimates of the treatment
effect certainly aids in addressing statistical concerns, it potentially exacerbates problems that arise
from design issues. Specifically, although it is generally beneficial to observe more draws of the
random variables εnj

j , when doing so involves adding nonharmonized studies, it introduces more
artifactual discrepancies, A(Di,Dj | θ), which can complicate efforts to make inferences about
both target-congruence and statistical properties of the random variables εnj

j . Only when studies
are harmonized does this dilemma not arise.

While replication is an important tool for probing the breadth and robustness of observed treat-
ment effects, it is not necessarily an “agnostic” empirical approach to accumulating empirical
evidence. We identify three reasons why a replication study can produce results that are different
from an original study: (i) statistical noise most commonly associated with estimation; (ii) target
discrepancies induced by mechanisms that lack external validity (however articulated); and novel
to our framework, (iii) artifactual discrepancies that are induced by research designs that are not
harmonized.

5 Testing External Validity
Replications are increasingly used to learn about the statistical properties of a study or body of
work. For instance, Raffler, Posner, and Parkerson (2020) sought to replicate Björkman and Svens-
son (2009), in part, because it was a small (and perhaps underpowered) study. In other cases,
replication is used to diagnose researcher error, malfeasance, or publication bias in a given subset
of the literature (e.g., Camerer et al., 2016, 2018; Open Science Collaboration, 2015; Klein et al.,
2014). Our presentation so far has black-boxed statistical issues that may arise in replications. We
did this to focus on properties that are important theoretical issues which are distinct from sam-
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pling and estimation. Anyone conducting a replication will, in practice, also confront statistical

discrepancies, and our framework straightforwardly extends to include these concerns.
When researchers seek to compare estimates across different studies, they typically adopt at

least one of two approaches, which we outline formally.11 The first approach involves com-
paring the point estimates of effects in different studies to assess whether a particular interven-
tion/treatment, assessed in different settings, produces the same effect. The second approach in-
volves comparison of the sign of estimates across studies. While we characterize this latter ap-
proach formally, it is important to note that this approach is frequently invoked informally when
researchers describe the relationship between their study and related work. We state the results in
this section in terms of two studies (or a study and its replication). However, the logic and results
extend to replication agendas with more than two studies. In these cases, researchers may test a
joint null hypothesis that all estimates are equivalent or share the same sign.

The first approach to accumulating evidence compares the estimates directly, measuring whether
a mechanism generates the same effect in multiple studies. This approach is used in some formal
replications but is less common in informal descriptions. To compare the estimates of two studies,
1 and 2, compute

e1 − e2 = τm1(ω
′

1, ω
′′

1 | θ1) + εn1
1 − τm2(ω

′

2, ω
′′

2 | θ2)− ε
n2
2 ,

which can be written:

e1 − e2 =

statistical discrepancy︷ ︸︸ ︷
εn1
1 − εn2

2 + ∆D1(θ1, θ2)︸ ︷︷ ︸
target discrepancy

−
artifactual discrepancy︷ ︸︸ ︷
A(D1,D2 | θ2). (2)

This expression highlights that the difference between the observed effects in 1 and 2, e1 − e2,
contains more than just random error, i.e., statistical discrepancies, but also includes target dis-
crepancies (when external validity fails) and artifactual discrepancies (when designs in 1 and 2 are
not harmonized). Empirical researchers will never observe the statistical noise terms εn1

1 and εn2
2

directly, but instead, rely on properties of their probability distributions to estimate how likely we
are to observe a given difference in estimates (or signs) under a the relevant null hypothesis. By
writing (2) in terms of target and artifactual discrepancies, it is straightforward to see that the inter-
pretation of these tests changes in the presence of these non-random discrepancies. To formulate

11Other approaches in the published literature rely on the statistical properties of a set of discrete
(typically unrelated) replications in which each replication consists of two or more studies and
researchers assess properties of the distribution of estimates across discrete replications.
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statistical tests that facilitate inference, an analyst makes some assumptions about the distribution
of εnj

j across j, as well as sampling properties. For instance, an analyst typically assumes that εnj

j

are independently and normally distributed with mean-zero, which ensures E[εni
i − ε

nj

j ] = 0.

Proposition 1. The estimate-comparison test computes:

W = e1 − e2

and test the null hypothesis Hw
0 : τm1(ω

′
1, ω

′′
1 |θ1) = τm2(ω

′
2, ω

′′
2 |θ2) against the alternative Hw

a :

τm1(ω
′
1, ω

′′
1 |θ1) 6= τm2(ω

′
2, ω

′′
2 |θ2).

Let two studies, E1 = (m1, (ω
′
1, ω

′′
1 ), θ1) and E2 = (m2, (ω

′
2, ω

′′
2 ), θ2), have unbiased and con-

sistent estimation errors, then

1. If studies 1 and 2 are harmonized, then the estimate-comparison test assesses a null hypothesis

that the mechanism is externally valid;

2. If the mechanism has external validity, then the estimate-comparison test assesses a null hy-

pothesis that studies 1 and 2 are harmonized.

Proof. Follows from Theorem 1.

The requirement of unbiasedness and consistency reflect conventional statistical concerns and
shows the importance of internal validity of all constituent studies. The estimate-comparison test
permits an analyst to explore both external validity and harmonization—but not simultaneously.
Generally, the test addresses whether ∆D1(θ1, θ2)−A(D1,D2 | θ2) is statistically distinguishable
from zero. In other words, to test either harmonization or external validity the analyst must be
able to (credibly) fix one of these discrepancies to zero in order to assess the other.12 Proposition
1 establishes two findings that are relevant for replication. First, by assuming harmonization, the
estimate-comparison approach allows for a test of a mechanism’s external validity. Second, by
assuming external validity, the estimate-comparison approach permits a test for harmonization—
provided the analyst knows independently (or assumes) that the mechanism under study is exter-
nally valid.

In the presence of non-zero target or artifactual discrepancies, the estimate comparison test
risks rejecting the null hypothesis that τm1(ω

′
1, ω

′′
1 |θ1) = τm2(ω

′
2, ω

′′
2 |θ2) because of non-statistical

discrepancies. In other words, we could mistakenly infer that an observed estimate was a statistical

12This is in stark contrast to meta-analysis, where target-equivalence is generally assumed for
identification of the empirical models, and hence, is a key ingredient of such approaches.
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fluke, or worse, a result of researcher malfeasance, because of a lack of external validity or har-
monization. Direct replications, where the setting is held constant and the design is harmonized,
eliminate target and artifactual discrepancies. This replication design allows researchers to learn
about statistical discrepancies and is well-suited to questions about publication bias or researcher
integrity.13

It is important to consider the relationship between Proposition 1 and replication designs that
leverage replications of multiple distinct studies (for examples in economics, see Camerer et al.,
2016, 2018). These tests rely on properties of the distribution of the error terms (εni

i ). For exam-
ple, if there were no publication bias or selective reporting, it should be the case that E[εni

i ] = 0

(for unbiased estimators used to analyze experiments). There are various tests used in these her-
culean replication studies (see also Open Science Collaboration, 2015), but all of these tests are
premised on a similar null hypothesis to Proposition 1, which assumes that A(Di,Dj | θ) = 0 and
∆D(θ, θ′) = 0, for each constituent replication. But A(Di,Dj | θ) and ∆D(θ, θ′) are not necessar-
ily random and do not follow a known distribution absent additional assumptions. This analysis
suggests that artifactual and target discrepancies can bias estimates of a literature’s replicability,
but the direction of this bias is unclear ex ante.

The second test focuses on the signs of the observed effects, ej , across studies and is meant
to probe information about the consistency of the sign of a mechanism’s effect. It is important to
stress that researchers often informally compare the sign across studies heuristically when compar-
ing studies, without formally testing a null hypothesis. Heuristic versions of the sign-comparison
test that differentiate between, for example, a positive (and significant) estimate versus a “null”
estimate are prone to exceptionally high rates of Type-I error (incorrect rejections of the null hy-
pothesis of sign congruence) (Simonsohn, 2015).

Proposition 2. The sign-comparison test computes:

Z = e1 · e2

and tests the null hypothesis Hz
0 : sign(τm1(ω

′
1, ω

′′
1 |θ1)) = sign(τm2(ω

′
2, ω

′′
2 |θ2)) against the alter-

native Hz
a : sign(τm1(ω

′
1, ω

′′
1 |θ1)) 6= sign(τm2(ω

′
2, ω

′′
2 |θ2)).

If two studies, E1 = (m1, (ω
′
1, ω

′′
1 ), θ1) and E2 = (m2, (ω

′
2, ω

′′
2 ), θ2), are harmonized, and esti-

mation errors, εn1
1 and εn2

2 , are unbiased and consistent, then the sign-comparison test assesses a

null hypothesis of sign-congruent external validity.
13Obviously, direct replication is more feasible in some contexts—like surveys—than others

(i.e., large-scale field experiments).
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Proof. Follows from Theorem 2.

The novel and important part of Proposition 2 is that it shows that the sign-comparison test
can be used to test a null hypothesis that a set of studies exhibits sign-congruent external validity,
but only if the constituent studies are harmonized. Recall that the null hypothesis of the sign-
comparison test holds that sign(τm1(ω

′
1, ω

′′
1 |θ1)) = sign(τm2(ω

′
2, ω

′′
2 |θ2)), an event corresponding

to when both empirical targets have the same sign. As such, rejection of this null hypothesis
constitutes a rejection of target-congruence. When studies are harmonized, this is equivalently a
test for sign-congruent external validity.

Brinch, Mogstad, and Wiswall (2017: Appendix B) provide a straightforward method for in-
ference on the sign-comparison test given two estimates e1 and e2 and their respective standard
errors se1 and se2. To do so, construct T -statistics, Tj =

ej
sej

, for both estimates, and compute the
following:

1. Test the null hypothesis that {e1 < 0} ∩ {e2 < 0} by calculating one-sided (lower) p-values
for both T1 and T2, denoted p

1
and p

2
. Implement a Bonferroni correction, denoted by B(·).

Select the minimum Bonferroni-corrected p-value, p = min{B(p
1
), B(p

2
)}.

2. Test the null hypothesis that {e1 > 0} ∩ {e2 > 0} by calculating one-sided (upper) p-values
for both T1 and T2, denoted p1 and p2. As in Step #1, implement a Bonferroni correction and
select the minimum Bonferroni-corrected p-value, p = min{B(p1), B(p2)

3. The sign-comparison test tests the null hypothesis that (e1, e2) is an element of the union of
the two sets described in steps #1 and #2. Following Berger (1982), the p-value for this test
is given by p = max{p, p}.

Figure 4 plots the regions in which one would reject the null hypothesis under both approaches,
for varying Type-I error rates (α). Consistent with the intuition about the stringency of the null
hypotheses, the rejection regions for the sign-comparison test are strictly smaller than those of the
estimate-comparison test.

What do we learn from a sign-comparison test when studies are not necessarily harmonized?
Remark 2 shows that relaxing harmonization leads to the introduction of artifactual discrepancies.
But because sign-congruent external validity does not pin down the target discrepancies we can-
not ascertain the sign of treatment effects when artifactual discrepancies are also present, since
their magnitude and direction are unknown. As such, we cannot construct the “reverse” test for
harmonization with the sign-comparison test.
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Figure 4: Rejection regions of the estimate- and sign-comparison tests for Type-I error rates,
α ∈ {0.01, 0.05, 0.1}. Both plots fix se1 = se2 = 1 in order to visualize these regions in two
dimensions.

Propositions 1 and 2 show that tests that are commonly employed in replication studies can
be used to assess some form of external validity or harmonization in the case of the estimate-
comparison approach. However, we show that any test for external validity or sign-congruent
external validity makes further assumptions about the design of constituent studies than is typi-
cally acknowledged. In particular, a replication study makes assumptions about both the statistical
properties of constituent studies (e.g., unbiasedness, consistency) as well as cross-study properties
(e.g., harmonization, external validity). Although the former is commonly discussed explicitly in
practice, the latter is rarely considered or discussed explicitly in applied replications. Our results
indicate that this omission is consequential since a lack of harmonization can lead to Type-I or
Type-II errors in inferences about external validity in either the sign- or estimate-comparison tests.

6 Alternative Approaches to Replication
We have established how replication can facilitate learning about different formulations of external
validity, and hence generate knowledge about a general substantive phenomenon. Before conclud-
ing we outline two approaches that can be used to accumulate knowledge across studies, a more
common structural approach and the design-based approach. We use our framework to provide a
concept-driven classification of replication studies.
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6.1 The Structural Approach

The most common approach to combining evidence across multiple studies relies on a structural
model of cross-study properties by positing a model of the underlying structure linking together
multiple studies (sometimes explicitly modeling aspects of a research design). The model and
assumptions associated with the structrual approach effectively constrain what kinds of target and
artifactual discrepancies are permitted to be present in the data. As an example, an analyst might
suppose that the empirical target takes the following functional form:

τm(ω′, ω′′|θ) = f(ω′, ω′′,m) + g(θ). (3)

In this formulation, the function f specifies how treatment effects vary in contrasts and measure-
ment strategies, which pins down artifactual discrepancies, and critically, does not allow artifactual
discrepancies to depend on the setting θ. Instead, the function g specifies how empirical targets, or
treatment effects, vary in setting (perhaps through contextual variables). Consequently, the func-
tion g pins down target discrepancies. Further assumptions about the functional form of f (like lin-
earity) facilitate measurement of target discrepancies—and thus evaluation of external validity—in
a non-harmonized, multi-setting replication. Specifically, in this case, it is straightforward to spec-
ify a null hypotheses analogous to that of the estimate-comparison tests. For example, one could
evaluate a null hypothesis of the form:

τ1 = λ(τ2;m,ω
′, ω′′), (4)

where λ specifies the relationship between observed effects, e1 and e2, and how that relationship
depends on contrasts and measurement strategies.14

The structural approach is most commonly used to combine rather than compare estimates
across studies. Indeed, this formulation in the context of replication represents a natural exten-
sion of Pearl and Bareinboim (2011)’s approach to transportability and is commonly invoked—if
unstated—in meta-analyses (Slough and Tyson, 2022). But, if one is willing to posit such a model,
and the assumptions about how treatment effects can change across contexts, a similar approach
can also be applied to replication studies.

14This allows (2) to be written in terms of a single target:

e1 − e2 = εn1
1 − εn2

2 + λ(τ2;m,ω
′, ω′′)− τ2,

where target and artifactual discrepancies can be written as properties of λ.
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Studies differ in...
Class Sub-class Samples Settings Design
Exact – – –
Direct X – –

Conceptual Harmonized X X –
Conceptual Single-setting X – X
Conceptual Non-harmonized, multi-setting X X X

Table 1: Classification of replication studies.

The key strength of the structural approach is that it allows an analyst to make strong empirical
conclusions from data, potentially eliminating concerns about target or artifactual discrepancies. It
is important to stress, however, that these benefits result from modeling assumptions that constrain
the kind of data substantive phenomena permitted to supply. Moreover, there is little consensus on
how to constrain substantive phenomena, i.e., what structural assumptions are appropriate in what
cases, and whether such things are faithfully represented as “nuisance” parameters, especially
when applied to evidence accumulation. Many structural approaches assume external validity and
that measured treatment effects do not vary in the design of the studies.15 By prohibiting sub-
stantive phenomena from presenting target or artifactual discrepancies (other than as idiosyncratic
error), analysts dodge the problems resulting from artifacts of research design or lack of external
validity that we highlight. Yet, assuming away target or artifactual discrepancies undermines the
causal interpretation some analysts may wish to impart to results from replication. Further ex-
ploration of structural approaches to replication should stress transparently what assumptions are
involved, and state precisely what is gained when downplaying the potential problems that might
arise when combining evidence from multiple places.

6.2 The Design-Based Approach

We have described three features that can differ between constituent studies in a replication: sam-
ples, setting, and design (contrasts and measurement strategies). These features map directly onto
a replication classification, shown in Table 1, that expands on common expositions of replica-
tion, including exact, direct, and conceptual replication (Collins, 1992; Schmidt, 2009; Nosek and
Errington, 2017). Our categorization distinguishes between different types of conceptual repli-
cation, and our results stress what can be learned from accumulating evidence across different
replications.

Exact replication implies that all aspects of two studies’ research design are identical, including

15Slough and Tyson (2022) term this assumption “design invariance.”
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the sample, which is typically impossible in the social sciences.16 The most faithful replications in
the social sciences are direct replications, which hold fixed the setting and research design while
varying the sample realizations across constituent studies (Schmidt, 2009; Ou and Tyson, 2022).
Each sample is drawn from the same population (encompassed in settings in our framework) using
the same sampling strategy. This design allows researchers to analyze differences in estimates that
are generated by sampling (i.e., statistical noise).

Most replications in social science change more than a study’s sample, thereby conducting a
conceptual replication. The vast majority of replication studies in social science, including Raffler,
Posner, and Parkerson (2020), are conceptual replications. While these conceptual replications
vary different attributes of constituent studies, there are not established best practices for how
these replications should be organized or assessed. Our framework clarifies three sub-classes of
conceptual replication. Conceptual replications use different samples (like direct replications), but
also differ in either the setting a study is conducted or in aspects of research design. In harmonized
conceptual replications, researchers implement the same design (i.e., contrasts and measurement
strategy) on samples from different settings (and thus different populations). In single-setting
conceptual replications, researchers implement a different design (perhaps on a different sample)
in the same setting.

Motivated by the distinctions highlighted in our framework, we propose a design-based ap-

proach to conceptual replication, which stresses the importance of a replication agenda and how
such agendas should be structured. This approach proceeds by admitting one potential discrep-
ancy at a time; summarized in Table 2, and is more tightly connected with credibility approaches
to internal validity (Banerjee and Duflo, 2009; Gerber and Green, 2012; Dunning, 2016; Samii,
2016).

1. Conduct harmonized (conceptual) replications in settings where the mechanism may be op-
erative. Measure target discrepancies to evaluate external validity, or sign-congruent external
validity, of the mechanism. This allows for learning about the set of settings where the mech-
anism exhibits external validity under the harmonized design. This step does not provide
evidence about target discrepancies or external validity under different designs.

2. Conduct single-setting (conceptual) replications in a setting by varying contrasts or mea-
surement strategies. Measure artifactual discrepancies by evaluating how treatment effects

16This is different from reproduction of results, which is what many journals do when com-
putationally “replicating” the findings of accepted articles (Höffler, 2017; Vilhuber, 2020, 2021;
Vilhuber et al., 2022; Chang and Li, 2022).
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Step Description Learning Caveats/limitations
1. Harmonized (conceptual) replica-

tions
Evaluate external validity No evidence about

target discrepancies or
external validity under
different designs.

2. Single-setting (conceptual) replica-
tions

Evaluate how τ changes in contrasts
or measurement strategies

No guarantee artifac-
tual discrepancies are
equivalent across set-
tings

3. Non-harmonized multi-study (con-
ceptual) replications, varying con-
trasts or measurement strategies.

With steps 1 and 2, evaluate
whether artifactual discrepancies
vary in settings.

Table 2: Design-based replication agenda.

change in contrasts or measurement strategies. This step does not guarantee that artifactual
discrepancies are equivalent across settings.

3. Conduct non-harmonized multi-study (conceptual) replications in other settings by varying
contrasts or measurement strategies in different settings. With steps 1 and 2, one can evaluate
whether artifactual discrepancies vary in settings. If artifactual discrepancies do not appear
to vary in settings, the mechanism exhibits external validity.

Our theoretical results show that the presence of non-zero artifactual discrepancies limit our
ability to learn about target discrepancies—because artifactual discrepancies are not simply nui-
sance parameters. Consequently, a replication agenda must prioritize learning about artifactual
discrepancies. In addition, estimating these discrepancies may be of independent interest. For
example, by varying a study’s design within a setting, we can understand how the treatment effect
function varies in contrasts or measurement strategies. Learning about artifactual discrepancies en-
ables analysts to answer questions like “do treatment effects increase monotonically in the strength
of treatment?” Because researchers can typically employ more than one measurement strategy in
a given study, replication experiments can be particularly useful for learning how treatment effects
vary in contrasts, which are generally more costly to implement. We note one limitation of this
sequential replication agenda is apparent if treatment effects change over time—a manifestation of
a lack of external validity. If this were the case, single-setting replications cannot reliably measure
artifactual discrepancies because time would introduce target discrepancies.17 Within our frame-
work, settings can be defined with respect to time in order to distinguish between a setting at times

17See Lovett and Munger (2019) and Munger (2021) on the importance of temporal validity.
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t and t + 1, as in the Björkman and Svensson (2009) and Raffler, Posner, and Parkerson (2020)
examples.

7 Conclusion
The accumulation of empirical evidence collected in multiple places, at different times, and by
different scholars presents numerous challenges. Perhaps most importantly is whether a mecha-
nism is externally valid (or sign-congruent externally valid). Replication (direct and conceptual) is
a tool that informs researchers about the generalizability of their empirical findings. We develop
a theoretical framework for the accumulation of evidence across multiple studies and apply it to
understand the theoretical foundations of replication.

We show that external validity and harmonization of studies is necessary and sufficient to estab-
lish target-equivalence, whereas sign-congruent external validity and harmonization are necessary
and sufficient to establish target-congruence. We then develop two sets of results about empiri-
cal targets and apply them to two statistical tests—the estimate-comparison and sign-comparison
tests. These results have implications for the use of the sign-comparison test as a means to assess
sign-congruent external validity. Specifically, this test is informative if and only if researchers ex-
amine harmonized studies. Consequently, our results provide a theoretical foundation for the most
common statistical test in replication studies, which is also the way empiricists informally discuss
related studies (even outside the context of replication).

Our theoretical results stress the importance of design harmonization, where the measurement
strategy and contrast across studies is the same. However, achieving harmonization in some set-
tings may be extremely difficult, or even impossible. Future research should consider the the-
oretical implications of imperfect harmonization, where, for instance, two treatments which are
“sufficiently close” should lead to closeness of empirical targets (by continuity). Another natural
extension of our framework involves the role of describing settings using covariates. In particular,
if there exists some “reduction set” between the set of settings and the θ argument of τ . This is
potentially valuable because two concrete settings may not differ in a meaningful way relative to
τ , in which case both settings would map to the same value in the reduction set.

We introduce a design-based approach to conceptual replication, which approaches learning
about external validity through replication. We argue that researchers should invest more in con-
ducting replications, but approach the different components of the cross-study environment se-
quentially, and measure each of them in isolation. We conclude by highlighting two important
issues that arise in replication agendas. First, a desire for novelty arguably hampers any replication-
based research agenda. These concerns are ultimately about professional incentives rather than the
accumulation of knowledge. However, a benefit of a sequential replication research agenda is that
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it more clearly articulates the contribution of each stage of the replication process. Second, in some
communities replication is largely considered as a method to guard against researcher malfeasance,
and as a result, independence of research teams conducting replications is an important concern.
Our notion of harmonization does not in any way preclude independent replication, however, more
transparent characterization and reporting of measurement strategies and comparisons will likely
be necessary to facilitate independent productive replication.

Appendix
Proof of Theorem 1. Sufficiency follows from the discussion in the text. For necessity, first notice
that target-equivalence under harmonization is equivalent to external validity. Now suppose that
studies E1 and E2 are target-equivalent, but not measurement harmonized. Then, for m1 and m2:

τm1(ω
′, ω′′ | θ1) = τm2(ω

′, ω′′ | θ2). (5)

Applying external validity, at m2 and (ω′, ω′′), it must be that for arbitrary θ1 and θ2

τm2(ω
′, ω′′ | θ1) = τm2(ω

′, ω′′ | θ2). (6)

Combining (5) and (6),
τm1(ω

′, ω′′ | θ1) = τm2(ω
′, ω′′ | θ1),

which, since the setting and contrasts were arbitrary, implies that the treatment effect must be the
same at m1 and m2 in any setting. Thus, since θ1 and θ2 were arbitrary, external validity allows us
to suppress the dependence of the treatment effect function on θ.

Recalling that M is a manifold, define

κ ≡ τm1(ω
′, ω′′ | θ),

which by external validity is the same at almost any θ ∈ Θ. We are interested in the level set
τ−1(κ;ω′, ω′′) ⊂ M . Since the derivative of τm(ω′, ω′′ | ·) has full rank for almost every mea-
surement strategy, m ∈ M , the set of regular points of τm(·) is of full measure on M . Thus, if
κ is not a regular value, then τ−1(κ;ω′, ω′′) does not contain any regular points, and is thus of
Lebesgue measure zero. Suppose, instead, that κ is a regular value, and thus, τ−1(κ;ω′, ω′′) is a
set of regular points. By the Preimage Theorem (e.g., Guillemin and Pollack, 1974: pg. 21), the

28



set τ−1(κ;ω′, ω′′) is a submanifold of M , and moreover,

dim τ−1(κ;ω′, ω′′) = dim M − dim R = 1− 1 = 0.

Thus, dim τ−1(κ;ω′, ω′′) < dim M , implying that τ−1(κ;ω′, ω′′) is a Lebesgue measure zero
subset of M , completing the argument.18 The argument for contrasts is similar and can be found
in Slough and Tyson (2022: Theorem 2).

Proof of Theorem 2. Sufficiency is straightforward from the definitions of sign-congruent external
validity and harmonization. For necessity, notice first that target-congruence, when combined
with harmonization, is equivalent to sign-congruent external validity. To establish the necessity
of harmonization over measurement strategies we suppose that target-congruence holds almost
everywhere and proceed by contradiction. In particular, suppose that there exist two studies, Ei and
Ej , which are contrast harmonized but not measurement harmonized, but where target-congruence
is satisfied almost everywhere.

The treatment effect function is a smooth function (almost everywhere) that maps from the set
of designs and settings to its image, the set of effects: τm(ω′, ω′′ | θ) : M × Ω × Θ → R. Its
composition with the function sign : R → {−1, 0, 1}, allows us to partition the set of effects,
i.e., the image of τ , into three sets. Sign-congruent external validity implies that these sets do not
depend on θ, which we drop for parsimony. Now, define the following sets:

E+
m ≡ {x ∈ R | τm(ω′, ω′′) = x > 0},

and
E0

m ≡ {x ∈ R | τm(ω′, ω′′) = x = 0},

and
E−m ≡ {x ∈ R | τm(ω′, ω′′) = x < 0}.

Since sign(τm(ω′, ω′′ | θ)) = −sign(τm(ω′′, ω′ | θ)), these sets are nonempty, and E+
m ∪ E0

m and
E−m ∪ E0

m are each manifolds with boundary, and their common boundary is E0
m.

Next, we focus on the preimage of sign in the set of contrasts, C. Since τ is smooth and
regular on C, the sets τ−1m (E+

m ∪ E0
m) ⊂ C and τ−1m (E−m ∪ E0

m) ⊂ C are manifolds with common
boundary τ−1m (E0

m) ⊂ C. Moreover, the set τ−1m (E0
m) is a boundaryless 1-dimensional manifold

18The Preimage Theorem applies since all sets in our framework are in R. Otherwise, simi-
lar arguments would follow applying the Regular Level Set Theorem, which is equivalent to the
Constant Rank Theorem, see Tu (2011: Ch. 9-10).
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(see Guillemin and Pollack (1974: pg. 59)).
For two studies, Ei and Ej , define the set H(Ei, Ej) = co(τ−1m (E0

mi
) ∪ τ−1m (E0

mj
)) as the convex

hull of τ−1m (E0
mi

) ∪ τ−1m (E0
mj

). Note that the elements of H(Ei, Ej) are precisely those that have
a different sign in study i than in study j, implying that on this set target-congruence does not
hold. Since measurement strategies are distinguishable almost everywhere, i.e., τ ’s derivative in
m has full rank almost everywhere, the set H(Ei, Ej) has a nonempty interior, and thus, positive
Lebesgue measure, contradicting that target-congruence holds almost everywhere. An identical
argument applies to harmonization of contrasts.

Proof of Theorem 3. This result follows from the following straightforward lemma:

Lemma 1. Let X, Y, Z ⊂ R and define the convex hull W = co(X ∪ Y ), then

co(W ∪ Z) = co(X ∪ Y ∪ Z).

Proof. By the definition of convex hull, for any t ∈ co(W ∪ Z), there exists some α ∈ [0, 1] such
that t = αw + (1 − α)z, for some w ∈ W and z ∈ Z. Since W = co(X ∪ Y ), there exists a
γ ∈ [0, 1], an x ∈ X and y ∈ Y , such that w = γx+ (1− γ)y. Thus,

t = αw + (1− α)z = α(γx+ (1− γ)y) + (1− α)z

= αγx+ α(1− γ)y + (1− α)z.

Denoting β1 = αγ, β2 = α(1−γ), and β3 = (1−α), and noting that αγ+α(1−γ)+(1−α) = 1,
implies that any element of co(W ∪Z) can be written as β1x+β2y+β3z, for some x ∈ X , y ∈ Y ,
and z ∈ Z, and where β1 + β2 + β3 = 1. Thus, t is an element of co(X ∪ Y ∪ Z). For the reverse
direction, note that X ∪ Y ∪ Z ⊂ W ∪ Z, hence co(X ∪ Y ∪ Z) ⊂ co(W ∪ Z).

Suppose that one considers a set of studies {Ei = (mi, (ω
′
i, ω

′′
i , θi)}Ni=1, where contrasts are

harmonized, so that (ω
′
i, ω

′′
i ) are identical across i. Using Lemma 1, observe that the set where

target-congruence does not hold, as a function of the number of studies N , can be defined re-
cursively as follows. Define H({Ei}2i=1) = H(E1, E2) as in the proof of Theorem 2. For any
1 < n ≤ N , define the set

H({Ei}ni=1) = co(H({Ei}n−1i=1 ) ∪ τ−1m (E0
mn

)).

That H({Ei}n−1i=1 ) ⊂ H({Ei}ni=1) is immediate. The argument for contrasts is similar.
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